Cation reorientation and octahedral tilting in the metal-organic perovskites MAPI and FAPI

Francesco Trequattrini

Dip. Fisica, Sapienza Univ. Roma & CNR-ISM Rome, Italy

Francesco Cordero

CNR-ISM, Istituto di Struttura della Materia, Roma -Tor Vergata, Italy

ICIFMS 19 (Rome, June 2022)

Collaborations

Francesco Cordero

CNR-ISM - Roma

anelastic spectroscopy

Francesco Trequattrini Phys. Dept., Sapienza Roma

Floriana Craciun

dielectric spectroscopy

Anna Maria Paoletti, Giovanna Pennesi, Gloria Zanotti

CNR-ISM - Roma

sample preparation, DSC

Amanda Generosi

X-ray

Summary

MAPI - MAPbI₃ [MA = CH_3NH_3] Metallorganic lead-halide perovskites: FAPI - FAPbI₃ [FA = $HC(NH_2)_2$]

• Anelastic spectra of MAPI and FAPI: structural transitions and relaxation due to cation reorientation and octahedral tilting

- Competition between polar and antiferrodistortive modes and correlated dynamics of the methylammonium molecules in MAPI
- Instability of cubic FAPI and influence of temperature, pressure, and humidity on the transition kinetics among the various polymorphs J. Phys. Chem. Lett. 10, 2463 (2019); J. Phys. Chem. C 124, 22972 (2020)

Hybrid metal-organic halide perovskites

A = organic molecules (methylammonium, formamidinium, ...)
B = Pb²⁺, Sn²⁺, Mn²⁺, Cd²⁺;
X = Cl⁻, Br⁻, I⁻

Hybrid metal-organic halide perovskites

- A = organic molecules (methylammonium, formamidinium, ...) B = Pb²⁺, Sn²⁺, Mn²⁺, Cd²⁺;
- $X = Cl^{-}, Br^{-}, I^{-}$

Goldschmidt's tolerance factor

$$\begin{array}{ccc} t = \frac{R_{\rm A} + R_{\rm X}}{\sqrt{2(R_{\rm B} + R_{\rm X})}} & \rightarrow & t = 1 \\ & \text{cubic structure} \end{array} \end{array}$$

FAPbI₃ (FAPI)

MAPbI₃ (MAPI)

Anelastic spectra and dielectric permittivity of MAPI and FAPI

(~1 kHz) Anelastic spectra

J. of All. and Comp. 867, 158210 (2021)

Anelastic spectra and dielectric permittivity of MAPI and FAPI

J. of All. and Comp. 867 158210 (2021)

Dielectric permittivity (1 MHz)

both perovskites in cubic α -phase above RT (freely rotating MA and FA cations)

two tilt transition of the PbI_6 octahedra into a tetragonal β and orthorombic γ phase (loss of orientational degrees of freedom of the MA and FA cations)

Anelastic spectra of MAPI: cubic-tetragonal transition

Expansion of the free energy in powers of Q(OP) and σ

Coupling between FE and tilt modes

Coupling between two modes (within Landau theory of p. t.).

$$F = \frac{\alpha_2}{2}P^2 + \frac{\alpha_4}{4}P^4 + \frac{\beta_2}{2}Q^2 + \frac{\beta_4}{4}Q^4 + \frac{\gamma}{2}P^2Q^2$$

$$\alpha_2 = \alpha_0 (T - T_C) \rightarrow FE$$
 transition below T_C
if $\gamma = 0$

$$\beta_2 = \beta_0 (I - I_T) \rightarrow \text{ fift fransition below } I_T$$

$$B = \frac{\beta_0}{\beta_2} \gamma \qquad \qquad \epsilon = \epsilon_{\infty} + \frac{C}{T - T_{\rm C} + BC(T_{\rm T} - T)}$$

J. Phys. Chem. Lett. 9, 4401 (2018)

Competition between polar and antiferrodistortive modes

Competition between polar and antiferrodistortive modes

FAPI: $\alpha \rightarrow \beta$ transition

Anelastic relaxation due to cation reorientation (MAPI)

MAPI: $\beta \rightarrow \gamma$ transition

First order transition

$$G = \frac{a(T-T_{C})}{2}Q^{2} + \frac{B}{4}Q^{4} + \frac{C}{6}Q^{6} - \frac{s_{0}}{2}\sigma^{2} - g\sigma Q - h\sigma Q^{2} + \cdots$$

first order transition (B < 0)
$$g \neq 0, h = 0 \quad \text{if } Q \text{ is a symmetrized coordinate}$$
$$T_{h} = T_{C} + \frac{B^{2}}{4aC} \qquad s - s_{0} = \begin{cases} \frac{g^{2}}{(T-T_{C})} & T > T_{C} \\ \frac{g^{2}}{4a[T_{h} - T + \sqrt{(T_{h} - T_{C})(T_{h} - T)}]} & T < T_{C} \end{cases}$$

FAPI: $\beta \rightarrow \gamma$ transition

