Relaxation time shift of Cobalt related internal friction peak in WC-Co cemented carbide

Lucas Degeneve, Samy Adjam, Daniele Mari

Ecole Polytechnique Fédérale de Lausanne Laboratory of Quantum Magnetism

A large number of shaping techniques require cutting tools.

A large number of shaping techniques require cutting tools.

Hardness Toughness Wear resistance

A large number of shaping

Extreme cutting conditions Hardness

> Toughness Wear resistance

The gradient of temperature in the tool during operation is very high.

Kagnaya, Tchadja, et al. "Temperature evolution in a WC-6% Co cutting tool during turning machining: experiment and finite element simulations." *WSEAS Transactions on Heat and Mass Transfer* 6.3 (2011): 71-80

Agenda of this presentation

- Overview of the WC-Co structure
- WC-Co spectrum
- Focus of the second relaxation peak
- Comparing the frequency and temperature scans

The structure is composed of WC grains with a Co binder

The structure is composed of WC grains with a Co binder

The two phases form continuous interpenetrated skeletons

Free Co undergoes a phase transition around 700 K.

The two phases form continuous interpenetrated skeletons

ceramic skeleton

metallic binder

Free Co undergoes a phase transition around 700 K.

This transition does not appear in the WC-Co structure.

Adjam, S., D. Mari, and T. LaGrange. "Strain glass transition of cobalt phase in a cemented carbide." *International Journal of Refractory Metals and Hard Materials* 87 (2020): 105161

The two phases form continuous interpenetrated skeletons

ceramic skeleton

metallic binder

Material and experimental method

This study used WC-6wt.%Co and WC-10wt.%Co samples.

Material and experimental method

This study used WC-6wt.%Co and WC-10wt.%Co samples.

The measurements were performed at subresonant frequency.

Between 700 K and 1350 K Between 3.0 mHz and 7.0 Hz

1 Sample	7. Magnet
2. Oven	8. Laser
3. Mounting rod	9. Photocell
4. Inertial weight	10. Tensioning wire
5. Mirror	11. Balance weight
6. Helmoltz coils	12. Balance arm

Material and experimental method

This study used WC-6wt.%Co and WC-10wt.%Co samples.

The Curie temperature was measured using a thermogravimeter as a high temperature magneto-meter.

WC-Co spectrum

A temperature scan between 700 K and 1200 K at 1 K/min and 1 Hz reveals 3 peaks.

WC-Co spectrum

A temperature scan between 700 K and 1200 K at 1 K/min and 1 Hz reveals 3 peaks.

The two grades present the same peaks slightly shifted.

Adjam, S., and D. Mari. "A link between durability of WC-Co coated cutting tools and mechanical damping spectra." *International Journal Of Refractory Metals & Hard Materials* 85.ARTICLE (2019): 105068.

WC-Co spectrum

A temperature scan between 700 K and 1200 K at 1 K/min and 1 Hz reveals 3 peaks.

The two grades present the same peaks slightly shifted.

WC-Co spectrum (P1)

A temperature scan between 700 K and 1200 K at 1 K/min and 1 Hz reveals 3 peaks.

The two grades present the same peaks slightly shifted.

WC-Co spectrum (P1)

The first peak is related to the Co phase and is unstable.

It was associated to the nanotwinned structure of Co.

Adjam, S., D. Mari, and T. LaGrange. "Strain glass transition of cobalt phase in a cemented carbide." *International Journal of Refractory Metals and Hard Materials* 87 (2020): 105161

WC-Co spectrum (P1)

The first peak is related to the Co phase and is unstable.

It was associated to the nanotwinned structure of Co.

Adjam, S., D. Mari, and T. LaGrange. "Strain glass transition of cobalt phase in a cemented carbide." *International Journal of Refractory Metals and Hard Materials* 87 (2020): 105161

WC-Co spectrum (P2)

The second peak is related to the Co phase. It was stable during the temperature scans.

Frequency scans

Frequency spectra are measured between 1350 K and 1000 K, and between 4 Hz and [] upper Jupper 3 mHz.

Frequency scans

Frequency spectra are measured between 1350 K and 1000 K, and between 4 Hz and 3 mHz.

Two peaks are visible in the scans.

Arrhenius plot of P2

The couples of the temperature and the frequency of P2 are plotted in an Arrhenius plot.

Arrhenius plot of P2

The couples of the temperature and the frequency of P2 are plotted in an Arrhenius plot.

A shift at 1140 K is observable.

WC-10%wt.Co samples are used in the thermogravimeter.

WC-10%wt.Co samples are used in the thermogravimeter.

The first sample is measured without magnetic field.

WC-10%wt.Co samples are used in the thermogravimeter.

The first sample is measured without magnetic field.

The addition of the magnetic field induces a variation in the measurement.

13

Interpretations of P2

The classical interpretation of P2 relates the shift to a change in the free length of the dislocations.

EPFL

Interpretations of P2

The classical interpretation of P2 relates the shift to a change in the free length of the dislocation.

A spinodal decomposition in W rich Co phases occurs.

Temperature [K]

Interpretations of P2

A new interpretation

A second interpretation can be obtained from the current results, based on point defect diffusion.

A new interpretation

A second interpretation can be obtained from the current results, based on point defect diffusion.

The fits in the Arrhenius plot give some hints.

A new interpretation

Temperature scans

Temperature spectra are measured between 5 mHz and 7 Hz, and between 1250 K and 900 K.

Temperature scans

Temperature spectra are measured between 5 mHz and 7 Hz, and between 1250 K and 900 K.

The Arrhenius plot does not reveal the shift.

- Three peaks are revealed by temperature dependent spectrum, and only two by frequency dependent spectrum.
- The Arrhenius plot of P2 with frequency scans shows a shift at 1140 K. This shift occurs in correspondence with the ferro-para magnetic transition of Co.
- Two possible interpretations of P2 are deduced.

Thank you for you attention

