

Universidad Euskal Herriko del País Vasco Unibertsitatea

Internal Friction at Nano-scale and Size-effects on Damping in Shape Memory Alloys

J. San Juan, J.F. Gómez-Cortés & M.L. Nó

e-mail: jose.sanjuan@ehu.es

Dept. of Physics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Bilbao, Spain

Objective: Applying SMA at small scale

The SMA are more competitive as sensors and actuators when decrease de size of the device Maximum workout per unit of volume ~ 10⁷ J/m³

Shape Memory Alloys for Micro Electro-Mechanical Systems (SMA for Smart MEMS called SMEMS)

Projects: MAT2017-84069-P from the Spanish Ministry MINECO. & ELKARTEK-CEMAP-2020 from Basque Government.

Shape Memory Alloy at small-scale

Thermo – elastic Martensitic Transformation

Thermally or stress-induced transformation Stress-induced → Superelastic effect

II. At a critical stress σ_c Martensite is induced

I. Elastic deformation of the Austenite Pillar

Superelastic effect

Il to III Martensite variants compatible with the applied stress are induced

Recovery when the stress is withdrawn

III. All the Austenite could be transformed to Martensite

IV. The transformation is reversible during unloading

Focus Ion Beam (FIB) Micro / Nano Pillars

[001] Oriented Single crystal

Image at constant contact force 2 μN sphero-conical tip

Image of the top of the micro-pillar

5 μ**m**

J. San Juan, M.L. Nó & C. Schuh, Advanced Materials 20 (2008) 272 J. San Juan, M.L. Nó & C. Schuh, J. Materials Research 26 (2011) 2461

Cu-Al-Ni

a

Superelastic Micro & Nano - Pillars

Superelastic behaviour of a sub-Micrometer Pillar

J. San Juan, M.L. Nó & C. Schuh, Nature Nanotechnology 4 (2009) 415-419

Are there size-effects on superelasticity ?

The beginning of the size-effects

All began in 2004 & 2005

When the pioneers on the size effects in confined crystal plasticity

Uchic, M.D., Dimiduk, D.M., Florando, J.N. & Nix, W.D., Sample dimensions influence strength and crystal plasticity. *Science* 305, 986-989 (2004).

Gall, K., Diao, J. & Dunn, M.L., The strength of gold nanowires. Nano Letters 4, 2431-2436 (2004).

Greer, J.R., Oliver, W.C. & Nix W.D., Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. *Acta Materialia* 53, 1821-1830 (2005).

Smaller is stronger !!

The beginning of the size-effects in SMA

A couple of years after, began the tests at micro-nano scale in SMA

1st Fully closed and reproducible superelastic test at nanoscale

San Juan, J., Nó, M.L. & Schuh, C.A., Superelasticity and shape memory in micro- and nanometer-scale pillars. *Advanced Materials* 20, 272-278 (2008).

1st Size effect reported on superelasticity at nanoscale

San Juan, J., Nó, M.L. & Schuh, C.A., Nanoscale shape-memory alloys for ultrahigh mechanical damping. *Nature Nanotechnology* 4, 415-419 (2009).

1st In-situ TEM showing the size effect on selection rules of martensite at nanoscale

Nó, M.L., Ibarra, A., Caillard, D. & San Juan, J., Quantitative analysis of stress-induced martensites by in situ transmission electron microscopy superelastic tests in Cu-Al-Ni shape memory alloys. *Acta Materialia* 58, 6181-6193 (2010).

Smaller is ... different !!

Size - Effects at Nano - Scale

Compression test in Bulk Material

A.Ibarra, J. San Juan, M.L. Nó Acta Materialia 55 (2007) 4789

Size – effects Superelastic behaviour at Nano - scale

1st Size effect:

increase of σ_{c}

J. San Juan, M.L. Nó & C. Schuh, Nature Nanotechnology 4 (2009) 415-419

Size - Effects at Nano - Scale

1st Size effect: Paucity of dislocations for heterogeneous nucleation Nucleation of Martensites with best oriented basal planes Martensite relieves the elastic stored energy at the free surface

M.L. Nó, A. Ibarra, D. Caillard, J. San Juan. Acta Mater 58 (2010) 6181 J. San Juan, M.L. Nó, J. Alloys & Compounds 577S (2013) S25

Size Effects: Ultra-high Damping

For a positive stress - strain cycle Loss Factor or Internal Friction

High Damping Materials for Structural Applications High Stiffness & High Damping

> Columns loaded in compression or Beams loaded in bending

Merit Index =
$$E^{1/2} \cdot \eta$$

$$\eta = \tan(\phi) = \frac{\Delta W}{\pi \cdot W_{\max}}$$

Size - Effects at Nano - Scale

Increase of the critical stress for superelasticity

Decrease of the stress for recovery

Increase of the cycle enclosed area

J. San Juan, et al, Nature Nanotechnology 4 (2009) 415-419

4th Size effect: Ultra-High Damping at Nanoscale

Objective: Size effect on \sigma_c for superelasticity

- Cu-Al-Ni & Cu-Al-Be Shape Memory Alloys. Single crystals [001]
- Micro & nano pillars milled by FIB (FEI Helios Nanolab 650)
- Nano compression tests

 (Hysitron TI-950) &
 (Jeol 7000F + Hysitron PI-85)
 (Sphero-Conical indenter 2 μm radio)
- A series of micro-nano pillars (from 2 μm to 260 nm ϕ)

Size Effects on Superelasticity

Cu-Al-Ni

Pillars > $1\mu m$

Nano-compression Stress – Strain curves

1.35

0.02 0.03 0.04 0.05 0.06 0.07 0.08

Strain

Superelastic testing at Nano-scale

Cu-Al-Ni

Small Pillar 260 nm ϕ

Comparison of the two first cycles

These results demonstrated that there is a size effect in Superelasticity

J.F. Gómez-Cortés et al., Nature Nanotechnology 12 (2017) 790 - 796

What is the scaling - law for this size-effect ?

Scaling-Law at Nano-scale

First approach: $\sigma_c = \sigma_{c0} + A \times d^{-n}$

As proposed for the size – effect in confined plasticity

Cu-Al-Ni [001] single crystals

J.F. Gómez-Cortés et al., Nature Nanotechnology 12 (2017) 790 - 796

Universal Scaling-Law for superelasticity

Similar behavior for Cu-Al-Ni and Cu-Al-Be

Strong increase of the critical stress σ_c for superelasticity when decreasing the size of the pillar below 1 μ m

Scaling-law for size-effect on the critical stress in superelasticity n takes a value - 2

Universal Scaling-Law for superelasticity in Cu-based SMA

Universal Scaling-Law for superelasticity

Scaling power-Law : $\sigma_c = \sigma_{c_0} + A \times d^{-n}$

Scaling-law for size-effect in plasticity: **n** vary from - 0.6 to - 0.8

Scaling-law for size-effect on the critical stress σ_c in superelasticity **n** takes a value - 2

Proposed model to explain this exponent 2 Due to starvation of dislocations and clean surfaces, there are no splicifiogenets is Nucleation no Marteolsite by offerentiansite the atomic lattice of austenite parallel to {110} planes

Important effect because of the high value of the Poisson ratio

V = 0.47

(In-situ experiment)

Instrumented Pico - Indenter at SEM

SEM - FEG JEOL - 7000F

-**--**-

Hysitron Pico-indenter PI - 85

Instrumented Pico - Indenter at SEM

SEM - FEG JEOL – 7000F

Hysitron Pico-indenter PI - 85

In-Situ Superelastic testing at SEM

Open the main door

SEM - FEG JEOL - 7000F

Hysitron Pico-indenter PI - 85

In-Situ Superelastic testing at SEM

Picoindenter ____

Rotation of the Picoindenter

Approach the Picoindenter to the WD

In-Situ Superelastic testing at SEM

Model for homogeneous nucleation

 $\mathcal{E}_{rr} = -\mathcal{V} \mathcal{E}_{zz}$

Elastic Compresion deformation of the Austenite Pillar

Elastic Longitudinal contraction

Lateral expansion

Compressed L2₁ Lattice

(101) planes expanded

Model for homogeneous nucleation

Atomic model for Homogeneous Nucleation of Martensite

When the elastic displacement on (110) planes reach U_M Where is coming the size effect from ?? U_M the homogeneous transformation takes place.

Model for homogeneous nucleation

$$\sigma_{apc}(d_P) = \sigma_{apc}(d_0) + \frac{2\sqrt{2} \cdot E \cdot U_M}{m_b \cdot \nu} \cdot (d_0 - d_P) \cdot \frac{1}{d_P^2}$$

Dependence of the Critical Stress on the pillar Diameter

Atomic model & Scaling-Law

The Scaling-Law Model for Superelasticity is consistent with the experimentally observed Size-effect

Cu-Al-Ni data

Is this a particular behaviour or it is a general one ?

Universal Scaling-Law for the Size effect

Similar results for Cu-Al-Be

Universal Scaling–Law for Superelasticity in Cu-based SMA

V. Fuster et al., Adv. Electr. Materials 6 (2020) 1900741

What about Damping at the nano-scale ?

J. San Juan, et al., Appl. Phys. Lett. 104 (2014) 011901

Preliminary works on Cu-Al-Ni pillars

Very good reproducibility Complete reversible recovery

Develop micro-dampers to protect MEMS

Micro-Nano Dampers of SMA

Vibration Damping in MEMS for aero-space applications

Take off: Mechanical vibrations. It is important to damp them

Landing at Earth

210 days of travel without relevant vibrations

Spatial travel between the Earth and Mars

Landing: Mechanical vibrations. Again, important to damp them 496 waiting days in Mars

To test the reproducibility of Damping on cycling and on time

Array of 16 micropillars : 20 μm²

Pillars size = 1,7 x 1,7 x 3,5 μ m³

J.F. Gómez-Cortés et al., Acta Mat. 166 (2019) 346-356

Loss factor for the 16 pillars Mean value η = 0.178

Damping after 200 cycles Mean value η = 0.158

Slightly lower but still very high

All pillars were tested for 200 cycles

Some pillars were tested for more than 2000 cycles

Pillar 1 5020 cycles

Pillar 7 2102 cycles

Pillar 10 3230 cycles

Damping at Nano-scale

Very good reliability as a function of time

P1: η = 0.17

P10: η = 0.12

Ultra-high Damping along cycling & on time

J.F. Gómez-Cortés et al., Acta Mat. 166 (2019) 346-356

Is this damping behaviour only present in compression?

To answer the above question we start by doing some preliminary in-situ off-axis tests in bending mode.

Then, several micro-beams were produced by FIB, to be tested in bending at the nanoindenter

The results from these tests evidence ...

Array of Cu-AI-Ni micropillars milled by FIB on [001] single crystal

Before the test

Under applied stress

Experiment off-axis

The stress is applied with the lateral side of the diamond indenter

Video of the In-situ test

Diamond indenter

Stress-induced Martensite during superelastic bending Apparently, the mechanical energy is fully dissipated

Helios-UPV/EHL

12 μm

long

1.2 μm

thick

1.5 μm

width

2

 HV
 HFW
 mode
 det
 mag ⊞
 WD
 tilt

 2.00 kV
 17.3 μm
 SE
 TLD
 12 000 x
 4.0 mm
 57 °

Micro - beam milled by FIB

Tested in bending + torsion

Reproducible Bending+torsion cycling

Ultra-high damping at high strains

Then ... What is the next step ?

Applying Damping at Nano-scale

Is damping scalable for applications ?

Array of 4 x 4 Cu-Al-Ni pillars of about 660 nm in diameter

Testing simultaneously all the array

Applying Damping at Nano-scale

Stars on load due to lack of parallelism

Good reproducibility on cycling

Individual micro pillar

Comparison with the array

Ultra-high damping when increasing the number of pillars and consequently the load

Applying Damping at Nano-scale

Ultra-high damping is scalable when increasing the number of pillars

Conclusions 1st

Micro & Nano pillars of Cu-Al-Ni exhibit completely reversible superelastic effect, above 8% even at Nano – Scale.

Superelastic cycling at nano-scale is very fast and perfectly reproducible above.

The Size-Effect on the critical stress is present in both **Cu-Al-Ni & Cu-Al-Be SMA**, with the same scaling-law.

This scaling-law with n = -2 for the critical stress on superelasticity, seems to be an Universal Scaling-Law for all Cu-based SMA.

Conclusions 2nd

Three different size-effects have been reported, being responsible for Ultra-High Damping at nano-scale, and reproducible above thousands cycles and along years.

Superelastic bending in micro pillars and micro beams of shape memory alloys, also exhibits Ultra-High Damping.

Micro & Nano devices of Cu-Al-Ni SMA exhibit Ultra-High Damping and could offer a novel solution to protect MEMS.

The road is paved for applications of Damping at nano - scale

Thank you

for your attention

Prof. Jose San Juan jose.sanjuan @ ehu.es

Bilbao B.S.L.

https://www.researchgate.net/profile/Jose_San_Juan2

