Hopping and clustering of oxygen vacancies in $BaTiO_{3-\delta}$ and the influence of the dynamically disordered off-centred Ti atoms

Francesco Cordero

CNR-ISM, Istituto di Struttura della Materia Area della Ricerca di Roma-Tor Vergata, Roma, Italy

Francesco Trequattrini

Dip. Fisica, Università di Roma "La Sapienza", Roma, Italy

David A. B. Quiroga, Paulo Sergio da Silva Jr.

Dep. Fisica, Universidade Federal de São Carlos, São Carlos, Brazil

ICIFMS-19 (Rome, 2022)

- brief introduction on O vacancies in perovskites
- anelastic spectra of SrTiO_{3- δ}: free, paired and aggregated V₀
- anelastic spectra of $BaTiO_{3-\delta}$: similar but
- the barrier for the hopping of an isolated V_O is larger and decreases with increasing δ
- the anisotropy of the elastic dipole is three times larger
- simple explanation in terms of Ti dynamically off-centred over 8 positions also in the cubic phase

Perovskite cubic structure and O vacancies

formula: ABX_3 , e.g. $SrTiO_3$

high T: cubic structure;

low T: distortions and rotations of the O octahedra and cation off-centering

variety of properties: ferroeletricity, giant magnetoresistance, ionic conductivity, superconductivity

only elastic dipole \rightarrow anelastic but not dielectric relaxation

$$\lambda^{(\nu)} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix}$$
$$\Delta \lambda = \lambda_2 - \lambda_1$$

Defects and compensating O vacancies

J. Am. Ceram. Soc., 99 3360 (2016)

- the bonds are partially covalent
- V_o may have charge 2+, 1+, 0

 V_0 may be introduced in a stoichiometric material by heating in an O free or reducing atmosphere ($CO + O \rightarrow CO_2 + V_0$ or $H_2 + O \rightarrow H_2O + V_0$) sample surface goes into the bulk

Importance of O vacancies in perovskites

Ionic conductors (e.g. $BaCe_{1-x}Y_xO_{3-x/2}$): V₀ and H are the charge carriers

High-T_c superconductors (e.g. $YBa_2Cu_3O_{7-x}$): doping depends on the concentration and ordering of O in non-stoichiometric planes

ferroelectrics (e.g. $PbZr_{1-x}Ti_xO_3$): V₀ are considered responsible for aging and fatigue

Elastic dipole of an O vacancy (calculations)

Calculations of atomic displacements around $V_{\rm O}$

C.H. Park and D.J. Chadi, Phys. Rev. B 57, R13961 (1998)

small outward shifts of nn Pb and Ti and inward shifts of nn O (electrostatic interaction)

Buban et al., PRB 69, 180102 (2004)

larger and longer range atomic displacements with larger supercell size

The elastic dipole of an O vacancy in a perfect perovskite lattice might be very small and nearly isotropic

D. A. Freedman et al., Phys. Rev. B 80, 064108 (2009) V_0^{2+} in SrTiO₃: Tr(λ) = 0.0039 $\Delta \lambda = 0.41$ (= 18 $\Delta \lambda_{mea}$) E.J. Granhed *et al.*, J. Mater. Chem. A 7, 16211 (2019) anelastic V_0^{\times} in BaTiO_{3-x}H_x: Tr(λ) = -0.049 $\Delta \lambda = 0.067$ (= 0.87 $\Delta \lambda_{mea}$) F. Cordero et al. jalcom 874, 159753 (2021)

Ceramic BaTiO_{$3-\delta$} - previous anelastic measurements

Anelastic measurements - free flexural resonance

ceramic BaTiO₃ preparation in UFSCar, São Carlos bar sintered at 1350 °C for 2 h 93.6% of the theoretical density cut into two bars 42 × 6.3 × 0.68 mm³ Young's modulus, 1st and 3^{3d} flexural modes (2.2 and 12 kHz)

F. Cordero, F. Trequattrini, D.A.B. Quiroga, P.S. Silva Jr. J. Alloys and Compounds 874 159753 (2021) Special Issue ICIFMS-19

single crystal SrTiO₃

sample: bar $26 \times 3.4 \times 0.5$ mm³ from wafer of M.T.I. Corporation; edges || <100> complex compliance s_{11} , 1st and 5th flexural modes (5.5 and 74 kHz)

F. Cordero, Phys. Rev. B 76, 172106 (2007) F. Cordero, Mater. Sci. Engin. A 521-522 77 (2009) - ICIFMS-15 Experimental - sample reduction

Induction heating at 900-1250 °C for 0.5-3 h in CO/O2 flux + homogeneization 800 °C for 1 h

sample inserted in Pt holder

no anelastic relaxation peak appearing after reduction can be due to H

flow of ~1000 mbar 0.1CO + 0.9Ar or O₂

O stoichiometry:

- mass change after reduction and reoxygenation
- temperature of the structural phase transition

Anelastic spectrum vs x

The creation of V_O introduces five peaks:

 $P_F\text{-}P_P$ grow considerably with increasing δ and therefore are due to V_O

 P_5 saturates already at δ = 0.001 and has a low activation energy: polarons?

F. Cordero, Phys. Rev. B 76, 172106 (2007)

Explanation of P1-P3 in terms of free and paired V_{O}

Statistical model for aggregated Vo

Subdivide the crystal into clusters of cells that are small enough to write their grandpartition function Z with all the possible configurations of $V_{\rm O}$

(1)
$$Z = \sum_{\alpha} w_{\alpha} = \sum_{\alpha} m_{\alpha} \exp\left(\frac{n_{\alpha}\mu - \mathcal{E}_{\alpha}}{kT}\right)$$
 (2) $\mu: \frac{kT}{Z} \frac{\partial Z}{\partial \mu} = \frac{\sum_{\alpha} n_{\alpha} w_{\alpha}}{\sum_{\alpha} w_{\alpha}} = \sum_{\alpha} \overline{n_{\alpha}} = \delta$

- $\textit{n}_{\!\alpha}$ occupation number of $\alpha\text{-th}$ configuration
- m_{α} multiplicity
- E_{α} energy
- w_{α} statistical weight
- μ chemical potential from the implicit equation (2)

Anelastic relaxation

parameters:

- W_1 = barrier for free hopping
- W_3 = barrier for pair reorientation
- W_2 = barrier for intermediate step
- E_p = pair binding energy
- E_c = binding of additional V into a chain
- τ_0 = preexponential factors
- α = Fuoss-Kirkwood broadening
- $\Delta\lambda$ = change of elastic dipole for isolated V $(\Delta\lambda)_1 \approx 2\Delta\lambda =$ " for pair reorientation

Three relaxations corresponding to $P_{F},\,P_{P}$ and P_{I} :

$$Q^{-1} = \frac{2}{9} \frac{c v_0}{s_{11} k_B T} (\Delta \lambda)^2 \frac{\alpha (\omega \tau)^{\alpha}}{1 + (\omega \tau)^{2\alpha}}$$

P2 between states differing by $E_2 = W_1 - W_2$:

$$\Delta(T) \propto \frac{c_p}{T \cosh^2(E_2 / 2kT)}$$

$$\tau^{-1} = \tau_0^{-1} \exp(-W_2 / kT) \cosh(E_2 / 2kT)$$

routines for calculating μ , concentrations, and Q^{-1} peaks written in Origin C and integrated in the non linear fitting tool

Fit

binding energies $E_P = 0.184 \text{ eV}$ $E_C = 0.26 \text{ eV}$ free isolated V₀ (P_F) $c = c_F$ $W_F = 0.60 \pm 0.007 \text{ eV}$ $\tau_{0F} = (5 \pm 1) \times 10^{-14} \text{ s}$ $\alpha \ge 0.95$ $(\Delta\lambda)_F = 0.026$

 $\begin{array}{l} \textbf{pair reorientation (P_P)} \\ c = c_P \\ W_P = 0.97 \pm 0.04 \ eV \\ \tau_{OP} = (7 \pm 4) \times 10^{-14} \ s \\ \alpha \ \geq 0.95 \\ (\Delta\lambda)_P = 1.87 \times (\Delta\lambda)_F \end{array}$

intermediate (P_I)

c = c_P W_P ~ 0.86 eV α ~ 0.35 $(\Delta\lambda)_{P}$ = 5×($\Delta\lambda$)_F

Fit

Confirmations from other recent experiments: V_o pairs

Highly O deficient SrTiO₃ films obtained by PLD at low p_{O2} V_O-Ti²⁺-V_O pairs diffuse X-ray scattering: linear defects Photoemission spectroscopy :Ti²⁺

Eom *et al.* "Oxygen Vacancy Linear Clustering in a Perovskite Oxide" J. Phys. Chem. Lett. 8, 3500 (2017)

Confirmations f	rom other	stuc	dies: hopping barrier of V _O	
Method	$\Delta H_{\rm mi}$	g,V	Metlenko De Souza Park and Weinich	
Method	(ev)	"Behavior of oxygen vacancies in single-	
Isotope diffusion	0.6		crystal SrTiO ₃ : Equilibrium distribution	
Isotope exchange	1.13		and diffusion kinetics"	
Chemical diffusion	0.98		Phys. Rev. B 85, 174109 (2012)	
Chemical diffusion	0.3			
Isotope exchange	1.06		Schwarz and Anderson J Electrochem	
Chemical diffusion $\delta < 5$	0.65 0.65		Soc. 122, 707 (1975)	
Chemical diffusion	2.1			
Electrical conductivity	1.0		Hackmann and Kanert, Radiat. Eff.	
Flectrical conductivity	0.62		Defects Solids, 119-121, 651 (1991)	
Anelastic relayation no	0.80			
Anelastic relaxation iso	olated 0.60		Cordero, Phys. Rev. B 76, 172106 (2007)	
Electrical conductivity	1.4		2000 1000 800 600 500 400 300	
Thermally stimulated relaxation	n 0.91			
C: Empirical pair potentials	0.65		Fe-Vail.	
C: Empirical pair potentials	0.76			
C: Density functional theory	0.4 - 0.4	.7		
C: Empirical pair potentials	0.9	٦ ۲	NSR rate 1/ 11 of	
C: Density functional theory	0.6		analogous to Q^{-1}	
C: Density functional theory	0.6			
C: Empirical pair potentials	0.96 –	1.35		

Confirmations from other studies: hopping barrier of V_O

V. Metlenko, ..., R. Waser, R. De Souza, Nanoscale 6, 12864 (2014)

	$\Delta H_{\mathrm{mig},\mathrm{V}_{\mathrm{O}}}/\mathrm{eV}$	Ref.
EPP calculations	0.63	This study
DFT calculations	0.53	43
DFT calculations	0.51	44
DFT calculations	0.58	45
Isotope diffusion	0.62 ± 0.08	29
Nuclear spin relaxation	0.62	46
Anelastic relaxation	0.60 ± 0.007	47
Chemical diffusion	0.65 ± 0.06	48

43 Walsh *et al.*, Phys. Rev. B 83 220301 (2011)
44 T. Mizoguchi *et al.* Appl. Phys. Lett. 98, 091909 (2011)
45 M. Lontsi-Fomena *et al.* Comput. Mater. Sci. 44, 53 (2008)
46 Hackmann and Kanert, Radiat. Eff. Defects Solids, 119–121, 651 (1991) NMR
47 F. Cordero, Phys. Rev. B 76, 172106 (2007) anelastic
48 Schwarz and Anderson, J. Electrochem. Soc. 122, 707 (1975) δ < 5x10⁻⁴

Most reliable studies on the hopping of V_0 in BaTiO₃

J. Kaub, J. Kler, S. C. Parker and R. A. De Souza, Phys. Chem. Chem. Phys. 22, 5413 (2020) 0/°C

Maier and Randall J. Am. Ceram. Soc. 99, 3360 (2016) impedance spectroscopy: 0.70eV

Anelastic spectra of $BaTiO_{3-\delta}$ vs $SrTiO_{3-\delta}$

- precursor softening due to phase transitions (deviation from stiffening linear with 7) already below 800 K
- higher background dissipation ceramic vs single crystal?)
- T_c decreases with O deficiency until at $\delta = 0.017$ also P_F from isolated V_O is visible
- increasing δ all the thermally activated peaks increase the intensity and shift to lower T

F. Cordero, F. Trequattrini, D.A.B. Quiroga, P.S. Silva Jr., J. Alloys and Compounds 874 159753 (2021)

Stability of the anelastic spectrum of $BaTiO_{3-\delta}$

thin splines = heat thick splines = cool

Fitting functions

hopping of very diluted isolated V_O in ceramic: orientational average of Debye relaxation

isolated V₀ in ceramic:
Debye relaxation
$$Q^{-1} = \frac{2}{15} \frac{cv_0 E}{k_B T} (\Delta \lambda)^2 \frac{\omega \tau}{1 + (\omega \tau)^2}$$

$$\Delta / T$$

$$Q^{-1} = \frac{\Delta}{T} \frac{\alpha (\omega \tau)^{\alpha}}{1 + (\omega \tau)^{2\alpha}}$$

$$\alpha \leq 1 \text{ Fuoss-Kirkwood broadening}$$

$$\Delta (T) \rightarrow \frac{\Delta}{T \cosh^2(A/2kT)}$$

$$\tau^{-1} = \tau_0^{-1} \exp(-W/kT) \cosh(A/2kT)$$
relaxation between states with energies differing of A

Fits of the anelastic spectra of $BaTiO_{3-\delta}$

 $\begin{array}{l} P_{F}: hopping \ of \ free \ V_{O} \\ P_{P}: reorientation \ of \ V_{O} \ pair \\ P_{D}: (V_{Ba/Ti}/impurity)-V_{O} \ pair \\ P_{D2}: other \ (V_{Ba/Ti}/impurity)-V_{O} \ pair \end{array}$

P_F : hopping of free V_O

NMR: Kanert *et al.*, Solid State Commun. 91, 465 (1994);

Impedance spectr.: Maier and Randall,

J. Am. Ceram. Soc. 99, 3360 (2016);

Isotope exchange: J. Kaub *et al.*, Phys. Chem. Chem. Phys. 22, 5413 (2020) V_O migration in BaTiO₃: W = 0.70 eV δ = 0.0153W = 0.72 eV (SrTiO₃: 0.60 eV) τ₀ = 2.6×10⁻¹⁴ s point defect α = 0.84 A/k_B = 7.4 K ~ 0 Δ = 3.51 K → Δλ = 0.077 (SrTiO₃: 0.026)

P_P: reorientation of V_O pair

$$\tau_0 = 4.7 \times 10^{-14} \text{ s}$$

 $\alpha = 0.80$

$$A/k_{\rm B} = 940 \, \rm k$$

$$\frac{\Delta(\delta=0.0153)}{\Delta(\delta=0.0027)} = 48 = 1.5 \times \left(\frac{0.0153}{0.0027}\right)^2$$

P_D: defect-V_O pair

defect: $V_{\text{Ba}} \text{ or } V_{\text{Ti}} \text{ or acceptor impurity}$

P_D: defect-V_O pair

defect: V_{Ba} or V_{Ti} or acceptor impurity

Why the differences between $BaTiO_{3-\delta}$ and $SrTiO_{3-\delta}$?

elastic dipole of isolated V₀ from the intensity of P_F: $\Delta\lambda = 0.026$ $\Delta\lambda = 0.077$

in BaTiO_{3-\delta}

- the peaks shift to lower \mathcal{T} with increasing δ
- $\Delta\lambda$ is three times larger

Phase transitions and Young's modulus of $Ba_{1-x}Sr_{x}TiO_{3-\delta}$

Eight-site model

Mason and Matthias, Phys. Rev. 74 1622 (1948); Devonshire (1949)

Bersuker, Phys. Lett. 20, 589 (1966); Chem. Rev. 121, 1463 (2021): pseudo-Jahn-Teller effect where the electronic energy is lowered by the increase of covalency between Ti and the closest O atoms.

Experimental confirmations: diffuse XRD, EXAFS, NMR, EPR, Brillouin scattering

R

Correlated anharmonic vibrations of Ti Hüller, Solid State Commun. 7 589 (1969) ...

Softening at the phase transitions

Phase transitions and Young's modulus of $Ba_{1-x}Sr_{x}TiO_{3-\delta}$

- Sr is only smaller than Ba but with the same orbitals
- V_O^{2+} is charged and dopes electrons: 1.5% V_O has an effect similar to 25% Sr

volume change of V₀ uncertain/small; larger contribution from Ti⁴⁺/Ti³⁺ polaronic conductivity, low Tanelastic relaxations in SrTiO_{3- δ}

Tyunina, Materials 13, 5596 (2020)

Magnitude of the elastic dipole of V_O

Major contribution to the anisotropy $\Delta\lambda$: the positively charged V_O pushes outwards the nn Ti⁴⁺ atoms. Easier in BaTiO₃

In $BaTiO_3$ the nn Ti atoms will populate the outward off-centre sites, increasing their outward displacement

Decrease of activation energies with doping

- Ti off-centering in undoped BaTiO₃ \rightarrow larger relaxation around V₀ \rightarrow larger barrier and $\Delta\lambda$
- doping reduces off-centering and all these effects

Conclusions

The anelastic spectra of $BaTiO_{3-\delta}$ contain the same peaks due to isolated and paired V_O as $SrTiO_{3-\delta}$ but

- the spectra shift much to lower ${\mathcal T}$ with increasing δ
- $\Delta\lambda$ of the isolated V_O is three times larger than in SrTiO_{3- δ}
- the activation energy for single V_O hopping is
- the hopping barrier is 0.70 eV compared to 0.60 eV in SrTiO_{3-\delta}

explanation in terms of 8 site potential of off-centre Ti, which

- enhances the outwards shifts of Ti from the $V_{\rm O}$
- is washed out by the band electrons doped by $V_{\rm O}$

Electrostatic repulsion between V₀ and formation of pairs electrostatic repulsion f_{ev} $f_{b} = 0.4 eV$ pair binding energy

Boltzmann factor $exp(E_b/k_B T)$ at 400 K = 10⁵ ! all V₀ paired at 400 K P1 could not be observed